Neutral amino acid transport by the blood-brain barrier. Membrane vesicle studies.
نویسندگان
چکیده
Endothelial cell membranes, the site of the blood-brain barrier, were obtained from the capillaries of cow brain. The luminal and abluminal membranes were separated by centrifugation on a discontinuous Ficoll gradient. Electron microscopy revealed that the membrane preparations consisted almost entirely of sealed vesicles. The release of latent enzyme activity showed that both membrane preparations were primarily right side out. Radiolabeled L-phenylalanine uptake by luminal vesicles was proportional to membrane protein concentration, with less than 10% binding. Transport was by a high affinity carrier (Km 11.8 +/- 0.1 microM, asymptotic standard error) that showed little or no stereospecificity, and was independent of Na+ or H+ gradients. Transport was inhibited by L-tryptophan, L-leucine, 2-aminobicyclo[2,2,1]heptane-2-carboxylate and D-phenylalanine, but not by N-(methylamino)-isobutyrate. Abluminal membranes showed an additional component in which a Na+ gradient accelerated the transport of both phenylalanine and N-(methylamino)-isobutyrate. These studies demonstrate the utility of membrane vesicles as a model to characterize the transport properties of the distinct membranes of the polar endothelial cells that form the blood-brain barrier.
منابع مشابه
Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries.
Capillary endothelial cells isolated from rat brain exhibit Na+-dependent uptake of the neutral amino acid analog alpha-(methylamino)isobutyric acid. Since studies in vivo demonstrate that this transport system is not present on the blood side of brain capillaries we conclude that Na+-dependent neutral amino acid transport is located on the brain side. Therefore, the luminal plasma membrane and...
متن کاملGlutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal.
Glutamine and glutamate transport activities were measured in isolated luminal and abluminal plasma membrane vesicles derived from bovine brain endothelial cells. Facilitative systems for glutamine and glutamate were almost exclusively located in luminal-enriched membranes. The facilitative glutamine carrier was neither sensitive to 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid inhibition nor ...
متن کاملNeutral amino acid transport at the human blood-brain barrier.
Transport regulates nutrient availability in the brain, and many pathways of brain amino acid metabolism are influenced by precursor supply. Therefore, amino acid transport through the blood-brain barrier (BBB) plays an important rate-affecting role in brain metabolism. Information on the Km of BBB amino acid transport provides the quantitative basis for understanding the physiological importan...
متن کاملNa+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier.
Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all o...
متن کاملBlood-brain barrier transport of 1-aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 36 شماره
صفحات -
تاریخ انتشار 1992